考研线代范围(考研数学一的线性代数的全部考试范围。)

2024-04-20 02:46:53

一、行列式

考试内容:行列式的概念和基本性质、行列式按行(列)展开定理。

考试要求:

1、了解行列式的概念,掌握行列式的性质;

2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。

二、矩阵

考试内容:矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵矩阵的秩、矩阵的等价、分块矩阵及其运算。

考试要求

1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质;

2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质;

3、理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵;

4、理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法;

5、了解分块矩阵及其运算。

三、向量

考试内容

向量的概念、向量的线性组合与线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量空间及其相关概念、维向量空间的基变换和坐标变换、过渡矩阵、向量的内积、线性无关向量组的正交规范化方法、规范正交基、正交矩阵及其性质。

考试要求

1、理解n维向量、向量的线性组合与线性表示的概念;

2、理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法;

3、理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩;

4、理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系;

5、了解n维向量空间、子空间、基底、维数、坐标等概念;

6、了解基变换和坐标变换公式,会求过渡矩阵;

7、了解内积的概念,掌握线性无关向量组正交规范化的施密特方法;

8、了解规范正交基、正交矩阵的概念以及它们的性质。

四、线性方程组

考试内容:线性方程组的克莱姆法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件解空间、非齐次线性方程组的通解。

考试要求

1、会用克莱姆法则;

2、理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件;

3、理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法;

4、理解非齐次线性方程组解的结构及通解的概念;

5、掌握用初等行变换求解线性方程组的方法。

五、矩阵的特征值和特征向量

考试内容:矩阵的特征值和特征向量的概念、性质、相似变换、相似矩阵的概念及性质。

考试要求

1、理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量;

2、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法;

3、掌握实对称矩阵的特征值和特征向量的性质。

六、二次型

考试内容:二次型及其矩阵表示合同变换、与合同矩阵二次型的秩惯性定理、二次型的标准形和规范形、用正交变换和配方法化二次型为标准形、二次型及其矩阵的正定性。

考试要求

1、掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理;

2、掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形;

3、理解正定二次型、正定矩阵的概念,并掌握其判别法。

①高等数学(函数、极限、连续、一元函数微积分学、常微分方程);②线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量)。

二、主要复习内容:

1. 行列式

行列式的定义、性质和常用计算方法(如:三角化法、加边法、降阶法、递推法、裂项法、范得蒙行列式法、数学归纳法、作辅助行列式法)。

重点:n阶行列式的计算。

2. 矩阵理论

矩阵的运算,分块矩阵的初等变换与矩阵的秩,可逆矩阵与伴随矩阵,矩阵的三种等价关系(等价、合同、相似),矩阵的特征值和特征向量,矩阵的迹,矩阵的最小多项式,矩阵的对角化,矩阵的常用分解(如:等价分解,满秩分解,实对称矩阵的正交相似分解,实可逆阵的正交三角分解,Jordan分解),几种特殊矩阵的常用性质(如:准对角阵,对称阵与反对称阵,幂等阵,幂零阵,对合阵,正交阵)。

重点:利用分块矩阵的初等变换证明有关矩阵秩的等式与不等式,矩阵的逆与伴随矩阵的性质与求法,矩阵的三种等价关系的关系,矩阵对角化的判断(特别是多个矩阵的同时对角化问题)和证明,矩阵分解的证明及应用(特别是实对称矩阵的正交相似分解,Jordan标准型的计算与有关证明)。

3. 线性方程组

Cramer法则,齐次线性方程组有非零解的充要条件及基础解系的求法和有关证明,非齐次线性方程组的解法和解的结构。

重点:非齐次线性方程组解的结构与其导出组的基础解系的有关证明。特殊方程组求解。

4.多项式理论

多项式的整除,最大公因式与最小公倍式,多项式的互素,不可约多项式与因式分解,多项式函数与多项式的根。

重点:运用多项式理论证明有关问题,如多项式的互素和不可约多项式的性质的有关证明与应用;重要定理的证明,如因式分解唯一性定理,Eisenstein判别法,Gauss引理等,不可约多项式的证明。

5.二次型理论

二次型线性空间与对称矩阵空间同构,化二次型为标准形和正规形,Sylvester惯性定律,正定、半正定、负定、半负定及不定二次型的定义和性质,正定矩阵的一些重要结论及其应用。

重点:正定和半正定矩阵的有关证明,n级方阵按合同关系的分类问题,实对称矩阵有关证明。

6. 线性空间与欧氏空间

线性空间的定义,向量组的线性关系(线性相关与线性无关,向量组的等价,极大线性无关组的求法,替换定理),基与扩充基定理,维数公式,坐标变换,基变换与坐标变换,生成子空间,子空间的交与和(包括直和),内积和欧氏空间的定义及简单性质,子空间的正交补,度量矩阵与标准正交基的求法以及性质的证明和应用,线性空间的同构。

重点:向量组的线性相关与线性无关的综合证明,判断一个向量是否由一组向量表示及如何表示,求向量组的极大无关组并用之表示其余向量,维数公式的证明及应用,特别是子空间直和的有关证明,标准正交基的求法及其性质的有关证明。

7. 线性变换

线性变换的定义、运算与矩阵,线性变换的核与值域,不变子空间,线性变换的特征根与特征向量,特征子空间,线性变换的对角化,正交变换、对称变换与反对称变换,线性变换与其矩阵对应关系的应用以及其特征值、特征向量等有关性质。

重点:线性变换与其矩阵对应关系的应用,线性变换的对角化,线性变换的核与值域。

正交变换、对称变换与反对称变换有关的证明。最小多项式和对角化的关系。

TAGS:
声明

1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;
2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;
3.作者投稿可能会经我们编辑修改或补充。

搜索
排行榜
标签列表